
Knowledge Blockchains: Applying Blockchain Technologies to 
Enterprise Modeling 

Abstract 

Blockchains permit to store information in a 
tamper-resistant and irrevocable manner by reverting 
to distributed computing and cryptographic 
technologies. The primary purpose is to keep track of 
the ownership of tangible and intangible assets. In the 
paper at hand we apply these concepts and 
technologies to the domain of knowledge management. 
Based on the explication of knowledge in the form of 
enterprise models this permits the application of so- 
called knowledge proofs for a. enabling the 
transparent monitoring of knowledge evolution, b. 
tracking the provenance, ownership, and relationships 
of knowledge in an organization, c. establishing 
delegation schemes for knowledge management, and d. 
ensuring the existence of patterns in models via zero- 
knowledge proofs. To validate the technical feasibility 
of the approach a first technical implementation is 
described and applied to a fictitious use case. 

1. Introduction

In the last years, the increasing adoption of the
virtual currency Bitcoin has sparked interest in the 
underlying technologies that enable the secure 
exchange of assets in an electronic manner [3]. At the 
core of these so-called blockchain technologies stand 
protocols that define the exchange and storage of 
information using cryptography. These ensure the 
tamper-resistant, decentralized, and irrevocable storage 
of transactions between parties in a transparent and 
entirely virtual, electronic environment [24]. Although 
the primary area of application is in the financial 
domain, several proposals have been made to apply 
blockchain technologies to other fields. Examples 
include the internet of things for storing the 
communication between smart devices, the verification 
of the authenticity of products in e-commerce or the 

decentralized storage of information about the domain 
name system (DNS) [26]. 

When extending the notion of assets in general to 
the very core of organizations, one immediately 
recognizes knowledge as one of the most important and 
valuable resources and a critical factor for remaining 
competitive [5, 15]. Similar as for financial value, also 
knowledge as the intellectual capital of an organization 
needs to be securely stored and, if necessary, shared 
between parties [25]. In addition, it is vital to track the 
provenance and ownership of knowledge as well as 
manage its distributed elicitation and its evolution in 
order to make it available to all relevant parties. 

Based on these similarities between knowledge and 
electronic assets, we will report about an exploratory 
research approach for applying the concepts of 
blockchain technologies to the area of knowledge 
management. For accomplishing the transition between 
knowledge products such as know-what, know-why, 
know-who, and know-when and electronically 
processable information products we revert to 
conceptual models [21, 30]. These permit on the one 
hand to represent explicit, clearly formulated types of 
knowledge in a machine-processable format [22, 6]. 
Thereby the major benefit is, that the Blockchain 
technologies enable us to identify the actors who 
created or modified the models (know-who) as well as 
to proof the provenance of their content (know-what) 
without revealing it in the fashion of zero-knowledge 
proofs. Thereby, the people behind the models and 
their knowledge can be accessed as well, e.g. to further 
investigate the know-why. By using blockchain 
technologies, the content of models will be stored in a 
tamper-resistant and irrevocable format. This includes 
the storage of explicit permissions for accessing and 
modifying their content as well as time-stamps, thus 
enabling the recording of the know-when. This 
corresponds to the considerations made for security in 
knowledge management regarding confidentiality, 
integrity, and availability [16]. This type of a 
blockchain will be denoted as Knowledge Blockchain. 



The remainder of the paper is organized as follows. 
In Section 2 we will give an introduction to blockchain 
technologies to provide the foundations for Knowledge 
Blockchains. The approach itself will be described in 
Section 3. In Section 4, a prototypical implementation 
will be presented to form the basis for a use case in 
Section 5. Work related to our approach will be 
discussed in Section 6, followed by a conclusion in 
Section 7. 

 
2. Foundations 

 
In this section, we briefly introduce fundamental 

blockchain concepts and the according terminology as 
it is commonly used today. 

 
2.1. Blockchain Technologies 

 
At the core of technologies required for realizing 

blockchains are cryptographic hash functions and 
public key cryptosystems. A cryptographic hash 
function H(M) permits summarizing a message M of 
any length with a fixed length pseudo-random output 
value V, e.g. with a length of 256 bit. Cryptographic 
hash functions satisfy the properties of collision and 
preimage resistance. This means that it is 
computationally infeasible to a. find two messages M, 
M’ which produce equal hash values as in H(M) =  
H(M’), b. compute M from V, and c. to derive M’ from 
an existing M so that H(M) =  H(M’) holds [24]. 
For summarizing two messages M1 and M2, it is trivial 
to apply a hash function to the concatenation of their 
individual hash values V1 and V2 as in HV1||V2 = 
H(H(M1)||H(M2)). In this fashion, values of a set V 
with |V| mod 2 =  0 can be hashed pairwise to create 
|V|/2 hash values, which are subjected to the same 
operation recursively so that a binary tree is created. 
The leafs of the resulting binary tree are individual 
values, whereas any node summarizes its two children 
and the root summarizes all values of the tree. These 
trees are called Merkle trees based on their inventor 
[23]. Theoretically, it would be possible to concatenate 
more than two hash values, however, the binary tree 
suggested by Merkle has the advantage of allowing a 
traversal in logarithmic space and time as demonstrated 
by Szydlo [29]. To prove that an element of V is 
included in the Merkle tree, at most log2(|V|)∗2 
operations need to be carried out. In the fashion of 
zero-knowledge proofs, this can be leveraged to 
efficiently show that a message is part of the Merkle 
tree. To prove membership of a message, other 
messages do not need to be known, as it is sufficient to 
know the hash values of the Merkle tree. To prove this 
for M1, its hash value V1 is re-calculated, concatenated 

to the existing hash value of its neighbor V2 and 
hashed as in H(V1||V2). The resulting hash value needs 
to be equal to the one stored as parent of V1 in the 
Merkle tree. This operation is applied recursively until 
the root hash is reached. This means that on every level 
of the tree, excluding the root, only the hash value in 
the neighbor node needs to be known to conduct the 
proof. 

Further, by reverting to public key cryptography 
additional information security features are provided. 
In a public key cryptosystem, confidentiality of 
messages can be achieved without a pre-shared secret. 
For achieving this, a sender and a receiver of a 
message both have pairs of public and private keys. A 
crypto-algorithm then allows for a. the encryption of a 
message using the public key of the receiver, who 
decrypts it with his corresponding private key, and b. 
the signing of a message with the private key of the 
sender so that the receiver can verify the signature 
using the sender’s public key [24]. 

By putting cryptographic hash functions and public 
key cryptosystems together, the basic functions of 
blockchains can be described. In particular, 
blockchains store data in a way that allows for efficient 
integrity checks by linking individual blocks – i.e. 
information parts – using hash values, so that any 
Block Bi with i >  0 contains a hash value that 
summarizes the preceding block Bi−1. The last block of 
the resulting chain therefore summarizes the whole 
chain which is linked back to B0, commonly referred to 
as genesis block. A block Bi consists of a block header 
and data. Data is a Merkle tree which contains 
individual data values as leaf nodes, summarized by 
the root hash value MRi. The block header consists of 
MRi and the hash value of the preceding block header 
BHi−1. Thus, a block Bi can be summarized by hashing 
its block header BHi using H(H(BHi−1)| |MRi). The 
whole chain is summarized by the block header of its 
last block. A modification of any data value in Bi 
would result in a changed hash value H(BHi) which 
breaks the chain, i.e. Bi+1 is no longer linked to Bi, as 
BHi+1 no longer contains the hash value of the 
preceding block. Integrity of all data in the chain can 
be assumed if the hash value of the block header of the 
last block remains unchanged. This makes blockchains 
well suited to store data in an immutable and thus 
tamper-resistant fashion. 

Any new block is appended as part of a mining 
process which enforces the specific rules of a 
blockchain. Entities carrying out the mining will record 
new data to be stored in the blockchain and check 
whether or not the protocol is violated by that data. In 
case that changes shall be applied to information stored 
in the blockchain, transactions are specified and sent to 
the miners. The transactions need to contain 



 

 
 

Figure 1: Concept of Knowledge Blockchains 
information about the data to be changed (e.g. a 
transfer of financial assets in bitcoin) and the 
corresponding identity wishing to conduct that change. 
The identity is ensured through digital signatures based 
on the above described public key cryptosystems. In 
the case of distributed, public blockchains that operate 
in a so-called permission-less fashion, miners are 
selected randomly based on the presentation of 
solutions for cryptographic puzzles. These puzzles are 
computationally hard deciphering problems that can 
only be solved by trying a number of possible solutions 
(proof of work). If a miner finds a solution, it is entitled 
to add information to the blockchain. Further details on 
the mining process can be found in [24]. 

In contrast to public blockchains, private or 
permissioned blockchains are not necessarily 
distributed. As a consequence, the access to miners is 
restricted and transactions need to authenticate 
themselves against the miner. Furthermore, domain- 
specific rules for the mining process and for generating 
new blocks can be defined so that an organization may 
use its own rules and models when data is added to the 
blockchain. This includes detailed specification of 
permissions for all identities interacting with the 
blockchain. 

 
3. The Concept of Knowledge Blockchains 

 
With the foundations described in the previous 

section we can now advance to the presentation of 
Knowledge Blockchains. The concept is based on the 
assumption that knowledge can - at least partially - be 
made explicit in the form of conceptual models. This 
view is common to many approaches in the area of 
enterprise modeling where knowledge about 

organizational entities such as business processes, IT 
systems, data, ontologies, actors and the like is today 
documented in the form of semi-formal or formal 
conceptual models [17]. These models can be 
processed by algorithms and humans alike in the sense 
of knowledge Information Systems and thus act not 
only as a basis for communication but also as input for 
machine-based analyses and simulations [1]. 

The massive use of enterprise models in 
organizations requires careful management and 
appropriate IT support. In cases where a single 
organization already stores several hundreds or 
thousands of such models [28], the challenge becomes 
not only to technically handle the contained 
information and make it accessible to users but also to 
provide mechanisms for adequately handling 
knowledge aspects [14, 21]. In this context, the 
concepts and technologies behind blockchains offer an 
extension to the traditional handling of enterprise 
models. Especially, the core aspect of blockchains to 
ensure irrevocable, tamper-resistant storage of 
information in a transparent way without trusted third 
parties has the potential to fundamentally change the 
way how knowledge in the form of enterprise models 
is stored and processed in and across organizations. 

As shown in Figure 1, Knowledge Blockchains 
store information in knowledge blocks that contain 
cryptographically-validated information parts. In line 
with the mechanisms in typical blockchains today, 
these information parts are structured themselves in the 
form of binary hash trees that permit to efficiently 
ensure the integrity of the knowledge blocks. If 
changes to the information shall be made, transactions 
are sent to the blockchain and processed by miners in 
the mining process. Thereby, it is checked whether all 
rules defined for the changes to be conducted are met. 



In the following we will describe the required 
extensions for enterprise modeling languages in order 
to use them in Knowledge Blockchains. This will be 
followed by the presentation of the structures of blocks 
and the mechanisms for permission management and 
delegation. For processing blocks, a specific mining 
procedure will be added that ensures the integrity of 
the Knowledge Blockchain and permits the application 
of so-called knowledge proofs. These will stand for the 
concrete application of the Knowledge Blockchain to 
tasks in knowledge management. 

 
3.1. Required Extensions of Modeling 
Languages 

 
When realizing a modeling language in a modeling 

tool, it typically depends on the underlying tool- 
platform how the language is to be implemented [20]. 
The extensions of such modeling languages/knowledge 
representations as required for Knowledge Blockchains 
abstract from the technical implementation and define 
generic attributes that need to be available. With the 
description of a concrete implementation in Section 4 
we will show how these attributes can be translated to  
a technical platform. 

 

 
Figure 2: Extensions of modeling language 

constructs for enabling Knowledge Blockchains and 
two sample entities of the BPMN modeling 

language 

 

 
Figure 3: Model Merkle tree 

 
A fundamental requirement for Knowledge 

Blockchains is the ability to uniquely identify any 
element in a conceptual model. Therefore, we revert to 
UUID (universally-unique-identifiers) attributes for 
model types, classes and relationclasses in the 
modeling language – see Figure 2. Any instance of 
these entities then needs to contain a correct UUID 
value to distinguish it from any other element. This 
also applies to the description of relations via from and 
to attributes and the containedInModel attribute to 
identify the assignment to a concrete model. 
Furthermore, attributes for containing hash values of 
attribute names and values (Attribute-Hash) and for all 
objects contained in a model (Object-Hash) are added. 
In the process of mining, these hash values will be 
calculated in the form of a Merkle tree as shown in 
Figure 3. 

 
3.2. Representation of Blocks 

 
For any blockchain-based application it needs to be 

decided how information is represented and stored on 
the chain. The structure derived for blocks in 
Knowledge Blockchains is shown in Figure 4. At the 
bottom two Merkle trees are contained in each block: 
one for representing the hashes of the content of 
enterprise models and the other one for storing the 
hashes about permissions. The latter aspect will be 
discussed in the following Section 3.3. For both trees, 
also the Merkle root hash is available which becomes 
part of the Block-Header. In the Block-Header, the 
hash of the Previous Block, a Timestamp, and the full 
content of the models and permissions in XML format 
is further added. For operating in distributed 
environments under the paradigm of permission-less 
ledgers, a Nonce (number used only once) is optionally 
available. This is used to solve cryptographic puzzles 
for deciding on the next miner to add a block to the 
chain – for details see [24]. All data in the Block- 
Header except the Nonce and the Timestamp is signed 
with the private key of the party submitting a 
transaction to produce a digital signature. The resulting 
hash value is stored in the Header-Signature. In this 
way, the identity of the submitting party is tied to a 
block. When a miner has solved the cryptographic 



puzzle and successfully checked the information 
contained in the block, it adds the Nonce and the 
Timestamp values, computes a hash value of the whole 
block and signs this hash value with its private key. 
These values are then contained in Block-Hash and 
Block-Signature. 

 

 
Figure 4: Structure of final knowledge blocks 

 
3.3. Permission Management and Delegation 

 
An essential feature of Knowledge Blockchains is 

to specify in a very detailed way who is allowed to 
conduct which changes on the blockchain. These rights 
are described in permission models which are an 

 

Figure 5: Structure of permission models 

inherent part of every block. As shown in Figure 5, 
three types of permissions are currently available: 
Create and Delete Permissions that assign an identity 
to create or delete models, objects, relations, and 
attribute values and Transfer Permissions that allow an 
identity to transfer some or all of its permissions to 
another identity. 

Identities in the permission model are represented 
by their Public Keys. In the genesis (initial) block of 
Knowledge Blockchains all permissions for all entities 
are assigned to the creator of the blockchain. He or she 
can then decide through subsequent transactions if and 
how these rights are to be delegated to other identities. 

 
3.4. Mining Rules 

 
When new transactions are sent to the blockchain 

they are checked for their conformance to the rules set 
by the permission model in the previous block. The 
mining may either be conducted by authenticated 
miners in the case of a permissioned Knowledge 
Blockchain or by randomly selected miners in case of 
permission-less Knowledge Blockchains. 

For conducting the checks during the mining as 
shown in Figure 6, it is assumed that for each model 
submitted in the transaction, hash values have been 
computed a. for the attributes of objects and relations, 
for all objects and relations in a model, and for all 
combinations of objects, relations, or models and their 
corresponding UUIDs, and b. for all combinations of 
these hash values, thereby forming a Merkle tree up to 
the Merkle root hash. The same is assumed for the 
submitted permission models, again up to the Merkle 
root hash. 

The outcome of the mining process is that either the 
requested changes are conducted and a new block is 
added to the Knowledge Blockchain. Or, that 
permissions have been found to be invalid and the 
transaction is declined. 

 
3.5. Knowledge Proofs 

 
By building upon the description of the properties 

of Knowledge Blockchains we can now advance to the 
discussion of their application in knowledge 
management based on the aforementioned knowledge 
products [21]. The first application domain is the 
transparent monitoring of knowledge evolution, 
respectively the dimensions of know-what and know- 
when. For tracking the evolution of knowledge as 
represented in the form of enterprise models, 
Knowledge Blockchains permit to retrieve in detail 
how knowledge has evolved over time. This is possible 
through investigating the blocks containing all changes 



in models and conducting proof procedures for 
checking the integrity of all model contents. 

 

Figure 6: Verification of mining rules in Knowledge 
Blockchains 

 
This directly leads to the second  application 

domain for tracking the provenance, ownership, and 
relationships of knowledge in an organization. Not 
only can the structure of knowledge in the form of 
enterprise models be analyzed in a reliable manner. 
Through the availability of digital signatures for the 
blocks in the Knowledge Blockchain it can also be 
verified who has conducted which change and who has 
empowered that person to do so (delegation schemes). 
This aspect covers the know-who and know-why. 

Finally, proofs can be conducted to ensure that 
certain patterns are contained in existing enterprise 
models. By computing the hash values for a given 

model pattern and applying corresponding Merkle 
proofs, it can be verified whether a model pattern is 
contained in a model on the Knowledge Blockchain. In 
this way, it can be proven – e.g. to external authorities 
– that certain knowledge is present in an organization 
and that it is used in a specific way, e.g. as part of the 
compliance checking of business processes through 
auditors (know-what, know-who, know-when). Such a 
proof covers the existence of individual model 
elements only, to support part of a potentially more 
complex compliance check. In reference to zero- 
knowledge proofs, the existence of knowledge as part 
of a model may be proven without revealing the 
contents of the model. In order to prove the existence 
of a model element, its attribute data is specified and a 
hash function is applied to it, possibly by auditors. 

To conduct the proof as described in Section 2, 
knowledge of the Merkle tree which stores the model is 
sufficient (Figure 3). Thus, attribute data may be 
removed before the audit. As of now, pattern matching 
uses an exact match approach. 

 
4. Prototypical Implementation 

 
To demonstrate the applicability of a Knowledge 

Blockchain and to show that such a system can be 
implemented in practice, we created a prototypical 
implementation. The prototype does not cover all 
mentioned functionalities and primarily serves as a 
testbed and simulation environment for experimenting 
with the concept of Knowledge Blockchains. We 
discuss the components of the implementation, its 
capabilities and limitations as well as further 
development. 

As a basis for the implementation we chose the 
ADOxx meta modeling platform [12]. This choice was 
due to the prior successful application in many industry 
and research projects. The core component is an 
ADOxx library consisting of three model-types to 
specify blockchains, business process models in 
BPMN, and permission models. For illustrative 
purposes, all model types have been assigned a 
graphical notation. The library has been extended with 
algorithms for a. sending block proposals in the form 
of transactions, b. mining new blocks, and c. verifying 
existing blocks. A custom-developed dynamic link 
library (DLL) is used to generate UUIDs, calculate 
SHA-256 hash values1 and as an interface to the 
OpenSSL library for elliptic curve cryptography (ECC) 
for public key cryptosystems [18]. 

 
 
 

1 NIST: Secure hash standard (shs). Retrieved 31-05-2017. 
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf 

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf


 

 

Figure 7: Screenshot of the prototype in ADOxx showing instances of a blockchain model type (upper left), a 
permission model type (far right), and a sample business process as a BPMN model (lower left) 

By using the ADOxx library, a new Knowledge 
Blockchain can be created by specifying a blockchain 
owner with a public-private-key-pair. Basic business 
process models can currently be constructed using 
BPMN Task and Gateway elements, connected by 
sequence flows. Permissions are specified and assigned 
to identities, for which public- and private-keys are 
created. When sending a block proposal, business 
processes and a permission model are specified, stored 
in Merkle trees and signed. Mining is initiated by a 
designated miner; in this process, the platform enforces 
permissions concerning the creation of process 
elements and permission delegation. Further 
permissions will be added in the future. As a 
conceptual demonstration, we implemented a 
permissioned blockchain in a local environment. For 
the future, it is planned to evaluate also a distributed 
version in a permission-less fashion. 

 
5. Description of a Fictitious Use Case and 
Discussion 

 
For illustrating the application of the concept of 

Knowledge Blockchains we will revert in the following 
to a fictitious use case. 

It builds upon a scenario in the domain of banks 
that has been used for scientific research before [11]. 
In this scenario, the steps and decisions for opening an 
account at a bank are described. This information 
represents the knowledge about this process that can be 
made explicit and that shall be documented in the form 
of conceptual enterprise models. 

In the context of Knowledge Blockchains, the first 
step is to initiate the blockchain and decide which 
modeling language to use. In our case this is 
accomplished by the CEO of the respective bank who 
acts as the blockchain owner and who decides to 
collect knowledge about the business processes in her 
company using the BPMN modeling language. For the 
purpose of simplicity, she chooses to use a 
permissioned blockchain that is only available within 
the company and managed by one central miner. Upon 
creation of the blockchain, the CEO with her identity  
in the form of her public key is assigned all create, 
delete, and transfer rights in a permission model - see 
Figure 8. This information is stored in the genesis 
block upon calculating the permission model Merkle 
tree. The genesis block is thereby created and signed 
by the miner. Subsequently, the CEO decides to 
delegate the right to create BPMN models to an 
employee. 



 

 
Figure 8: Sample instance of a permission model 

type 
The identity of this Employee A in the form of the 

corresponding public key together with a Create- 
Permission is thus added to a copy of the permission 

model, which is obtained from the previous block. This 
is shown in the lower part of Figure 8. The updated 

permission model is then submitted to the miner as a 
new transaction. For this purpose, the CEO has to sign 

the proposed block with the private key of her digital 
signature. The miner checks the signature and whether 

this identity is allowed to conduct the changes based on 
the last permission model. As this is the case for the 
CEO identity, the block proposal is accepted and the 

new permission model becomes part of the blockchain. 
Equipped with the new rights, Employee A  can now 

create BPMN model elements and submit them to the 
blockchain. Upon the receipt of the block proposal, the 

miner verifies the identity and the permissions and 
adds the information to the Knowledge Blockchain. 

This results in further blocks in the Knowledge 
Blockchain that represent the content of the business 

process model as shown in Figure 9. 
The following tasks can now be accomplished 

based on the information stored in the blockchain. 
First, it can be transparently monitored by all parties 
with access to the Knowledge Blockchain, how the 
represented knowledge evolves, how new entities are 
added, and who is responsible for adding  them. 
Besides this identification of the provenance of 
knowledge, also the delegation scheme behind the 
Knowledge Blockchain becomes visible. It can exactly 
be tracked, when the CEO delegated the mentioned 
Create-Permission and to whom. If necessary, process 
model patterns can be specified and tested for their 

containment in the Knowledge Blockchain without 
revealing the content of the BPMN model (zero- 
knowledge proof). By reverting to the example of the 
account opening process this could be the task ”Ask 
customer for ID”, which is complimentary for any 
bank to check the identity of a future customer. In the 
current version of the Knowledge Blockchain, 
according attribute hash values could be calculated for 
this pattern and compared with the Merkle tree stored 
in the most recent block to proof its existence. 

 
6. Related Work 

 
Concerning existing approaches which make 

similar propositions with regard to the organization and 
evolution of knowledge as discussed for Knowledge 
Blockchains, we identified the following areas: 
approaches that allow to track changes in enterprise 
models with their provenances and allow to restrict and 
delegate access to models and collaborative modeling 
approaches and mechanisms in modeling tools for 
multi-user features. 

Document management and versioning control 
systems (VCS) allow storing any number of electronic 
documents, like source code files or models, in a well- 
defined state as a version together with their author. 
Well-known VCS include systems using a centralized 
repository, such as CVS [7] and SVN [8]. Distributed 
Version Control Systems (DVCS) such as Git 
additionally permit users to create and synchronize 
distributed repositories and have grown in popularity 
[9]. While VCS offer version control at the level of 
individual files, they can also be used to  
collaboratively access models. Altmanninger et al. [2] 
evaluate various VCS for this purpose. They show that 
such systems usually allow comparisons of models and 
the detection of syntactic conflicts. For the purposes of 
knowledge evolution, such systems can be leveraged to 
track model changes together with their respective 
authors. The comparison can take model elements into 
account, while a commit or fetch of an artifact is 
conducted on a per-model-basis. Access to a repository 
can be restricted, however, it is not possible to restrict 
the modeling of individual models, model elements or 
to delegate such permissions. 

Collaborative modeling approaches such as COMA 
[27], DREAM [4], and CoMoMod by Dollmann et al. 
[10] are concerned with the collaboration during the 
creation of models to build models with multiple 
participants. Such approaches provide means to 
contribute to a model. However, knowledge evolution 
in the form of tracking model changes and access 
restrictions are not covered by these approaches. 



Figure 9: Detailed view of the sample instance of the Knowledge Blockchain model type in ADOxx 
On a tool level, professional modeling tools such as 

ADOxx [12] or MetaEdit+ [19] provide multi-user 
features. Models can be organized in repositories and 
versioned. Much like in VCS, versions and authors of 
individual model versions may be tracked, however, 
there is no enforcement of individual access 
restrictions at the platform level. This means that there 
is no system-enforced process by which new models or 
model elements are proposed, checked against 
permissions and possibly added to a repository. 

With regard to existing approaches, version control 
systems are typically used to provide knowledge 
evolution features through extensions and 
implementations in modeling tools. The model creation 
process is covered by collaborative modeling 
approaches that focus on the creation process. A 
blockchain-based method facilitates collaborative 
aspects by allowing identities to make signed changes 
to models, which are incorporated only if platform- 
enforced access rules allow it. Through the generation 
of irrevocable blocks with the changed models, 
versioning is implicit. In contrast to existing 
approaches, cryptography enforces access control and 
allows changes on a per model- and model-element- 
basis that can be traced back to their provenance. 

7. Conclusion and Outlook

In this paper, we have presented the concept of 
Knowledge Blockchains for storing the knowledge 
expressed in enterprise models in an immutable and 
tamper-resistant way. It has been illustrated which 
benefits can be gained from such an approach in the 
context of knowledge management. The approach in its 
current stage contains several limitations that are to be 

tackled in future versions. For example, it is currently 
not foreseen to uniquely identify also the elements of 
the modeling language using UUIDs and to ensure the 
correct instantiation of models based on the modeling 
language. This is currently assumed to be implicitly 
handled by the used modeling platform. In addition, 
also the current implementation on the ADOxx 
platform has several shortcomings. First and foremost, 
the implementation so far only contains a subset of the 
required rules for checking the conformance of blocks 
during mining. 

Regarding future work, extensions of the UUID 
scheme using URI will be evaluated. In addition, the 
approach will be described in a more formal way, e.g. 
using a formalism such as FDMM [13], to ensure a 
common understanding of all technical details. 


