Knowledge Blockchains: Applying Blockchain Technologies to
Enterprise Modeling

Abstract

Blockchains permit to store information in a
tamper-resistant and irrevocable manner by reverting
to distributed computing and cryptographic
technologies. The primary purpose is to keep track of
the ownership of tangible and intangible assets. Inthe
paper at hand we apply these concepts and
technologies to the domain of knowledge management.
Based on the explication of knowledge in the form of
enterprise models this permits the application of so-
called knowledge proofs for a. enabling the
transparent monitoring of knowledge evolution, b.
tracking the provenance, ownership, and relationships
of knowledge in an organization, c. establishing
delegation schemes for knowledge management, and d.
ensuring the existence of patterns in models via zero-
knowledge proofs. To validate the technical feasibility
of the approach a first technical implementation is
described and applied to a fictitious use case.

1. Introduction

In the last years, the increasing adoption of the
virtual currency Bitcoin has sparked interest in the
underlying technologies that enable the secure
exchange of assets in an electronic manner [3]. At the
core of these so-called blockchain technologies stand
protocols that define the exchange and storage of
information using cryptography. These ensure the
tamper-resistant, decentralized, and irrevocable storage
of transactions between parties in a transparent and
entirely virtual, electronic environment [24]. Although
the primary area of application is in the financial
domain, several proposals have been made to apply
blockchain technologies to other fields. Examples
include the internet of things for storing the
communication between smart devices, the verification
of the authenticity of products in e-commerce or the

decentralized storage of information about the domain
name system (DNS) [26].

When extending the notion of assets in general to
the very core of organizations, one immediately
recognizes knowledge as one of the most important and
valuable resources and a critical factor for remaining
competitive [5, 15]. Similar as for financial value, also
knowledge as the intellectual capital of an organization
needs to be securely stored and, if necessary, shared
between parties [25]. In addition, it is vital to track the
provenance and ownership of knowledge as well as
manage its distributed elicitation and its evolution in
order to make it available to all relevant parties.

Based on these similarities between knowledge and
electronic assets, we will report about an exploratory
research approach for applying the concepts of
blockchain technologies to the area of knowledge
management. For accomplishing the transition between
knowledge products such as know-what, know-why,
know-who, and know-when and electronically
processable information products we revert to
conceptual models [21, 30]. These permit on the one
hand to represent explicit, clearly formulated types of
knowledge in a machine-processable format [22, 6].
Thereby the major benefit is, that the Blockchain
technologies enable us to identify the actors who
created or modified the models (know-who) as well as
to proof the provenance of their content (know-what)
without revealing it in the fashion of zero-knowledge
proofs. Thereby, the people behind the models and
their knowledge can be accessed as well, e.g. to further
investigate the know-why. By using blockchain
technologies, the content of models will be stored in a
tamper-resistant and irrevocable format. This includes
the storage of explicit permissions for accessing and
modifying their content as well as time-stamps, thus
enabling the recording of the know-when. This
corresponds to the considerations made for security in
knowledge management regarding confidentiality,
integrity, and availability [16]. This type of a
blockchain will be denoted as Knowledge Blockchain.

The remainder of the paper is organized as follows.
In Section 2 we will give an introduction to blockchain
technologies to provide the foundations for Knowledge
Blockchains. The approach itself will be described in
Section 3. In Section 4, a prototypical implementation
will be presented to form the basis for a use case in
Section 5. Work related to our approach will be
discussed in Section 6, followed by a conclusion in
Section 7.

2. Foundations

In this section, we briefly introduce fundamental
blockchain concepts and the according terminology as
it is commonly used today.

2.1. Blockchain Technologies

At the core of technologies required for realizing
blockchains are cryptographic hash functions and
public key cryptosystems. A cryptographic hash
function H(M) permits summarizing a message M of
any length with a fixed length pseudo-random output
value V, e.g. with a length of 256 bit. Cryptographic
hash functions satisfy the properties of collision and
preimage resistance. This means that it is
computationally infeasible to a. find two messages M,
M’ which produce equal hash values as in H(M) =
H(M”), b. compute M from V, and c. to derive M’ from
an existing M so that H(M) = H(M") holds [24].

For summarizing two messages M1 and M2, it is trivial
to apply a hash function to the concatenation of their
individual hash values V1 and V2 as in Hwpe =
H(H(ML)||H(M2)). In this fashion, values of a set V
with |M mod 2 = 0 can be hashed pairwise to create
[M/2 hash values, which are subjected to the same
operation recursively so that a binary tree is created.
The leafs of the resulting binary tree are individual
values, whereas any node summarizes its two children
and the root summarizes all values of the tree. These
trees are called Merkle trees based on their inventor
[23]. Theoretically, it would be possible to concatenate
more than two hash values, however, the binary tree
suggested by Merkle has the advantage of allowing a
traversal in logarithmic space and time as demonstrated
by Szydlo [29]. To prove that an element of V is
included in the Merkle tree, at most loga(|\V])=2
operations need to be carried out. In the fashion of
zero-knowledge proofs, this can be leveraged to
efficiently show that a message is part of the Merkle
tree. To prove membership of a message, other
messages do not need to be known, as it is sufficient to
know the hash values of the Merkle tree. To prove this
for M1, its hash value V1 is re-calculated, concatenated

to the existing hash value of its neighbor V2 and
hashed as in H(V1||V2). The resulting hash value needs
to be equal to the one stored as parent of V1 in the
Merkle tree. This operation is applied recursively until
the root hash is reached. This means that on every level
of the tree, excluding the root, only the hash value in
the neighbor node needs to be known to conduct the
proof.

Further, by reverting to public key cryptography
additional information security features are provided.
In a public key cryptosystem, confidentiality of
messages can be achieved without a pre-shared secret.
For achieving this, a sender and a receiver of a
message both have pairs of public and private keys. A
crypto-algorithm then allows for a. the encryption of a
message using the public key of the receiver, who
decrypts it with his corresponding private key, and b.
the signing of a message with the private key of the
sender so that the receiver can verify the signature
using the sender’s public key [24].

By putting cryptographic hash functions and public
key cryptosystems together, the basic functions of
blockchains can be described. In particular,
blockchains store data in a way that allows for efficient
integrity checks by linking individual blocks — i.e.
information parts — using hash values, so that any
Block B;i with i > 0 contains a hash value that
summarizes the preceding block Bi-1. The last block of
the resulting chain therefore summarizes the whole
chain which is linked back to By, commonly referred to
as genesis block. A block B; consists of a block header
and data. Data is a Merkle tree which contains
individual data values as leaf nodes, summarized by
the root hash value MR;. The block header consists of
MR; and the hash value of the preceding block header
BHi-1. Thus, a block Bj can be summarized by hashing
its block header BH; using H(H(BHi-1)||MR;). The
whole chain is summarized by the block header of its
last block. A modification of any data value in B;
would result in a changed hash value H(BH;) which
breaks the chain, i.e. Bi+1 is no longer linked to B, as
BHi:1 no longer contains the hash value of the
preceding block. Integrity of all data in the chain can
be assumed if the hash value of the block header of the
last block remains unchanged. This makes blockchains
well suited to store data in an immutable and thus
tamper-resistant fashion.

Any new block is appended as part of a mining
process which enforces the specific rules of a
blockchain. Entities carrying out the mining will record
new data to be stored in the blockchain and check
whether or not the protocol is violated by that data. In
case that changes shall be applied to information stored
in the blockchain, transactions are specified and sent to
the miners. The transactions need to contain

Transachion

Edfaing Mining
Knowledge
Blockchain |:| :I t
L .

Crginal F_i Lipdated :

Knowleoge i Knowlzdge Cryptographically

Hash me Hash Trae Vauated Part

= = = Knowiocs
[

Transaction with

2

A

Bigcw Proposal

Figure 1: Concept of Knowledge Blockchains

information about the data to be changed (e.g. a
transfer of financial assets in bitcoin) and the
corresponding identity wishing to conduct that change.
The identity is ensured through digital signatures based
on the above described public key cryptosystems. In
the case of distributed, public blockchains that operate
in a so-called permission-less fashion, miners are
selected randomly based on the presentation of
solutions for cryptographic puzzles. These puzzles are
computationally hard deciphering problems that can
only be solved by trying a number of possible solutions
(proof of work). If a miner finds a solution, it is entitled
to add information to the blockchain. Further details on
the mining process can be found in [24].

In contrast to public blockchains, private or
permissioned blockchains are not necessarily
distributed. As a consequence, the access to miners is
restricted and transactions need to authenticate
themselves against the miner. Furthermore, domain-
specific rules for the mining process and for generating
new blocks can be defined so that an organization may
use its own rules and models when data is added to the
blockchain. This includes detailed specification of
permissions for all identities interacting with the
blockchain.

3. The Concept of Knowledge Blockchains

With the foundations described in the previous
section we can now advance to the presentation of
Knowledge Blockchains. The concept is based on the
assumption that knowledge can - at least partially - be
made explicit in the form of conceptual models. This
view is common to many approaches in the area of
enterprise modeling where knowledge about

organizational entities such as business processes, IT
systems, data, ontologies, actors and the like is today
documented in the form of semi-formal or formal
conceptual models [17]. These models can be
processed by algorithms and humans alike in the sense
of knowledge Information Systems and thus act not
only as a basis for communication but also as input for
machine-based analyses and simulations [1].

The massive use of enterprise models in
organizations requires careful management and
appropriate IT support. In cases where a single
organization already stores several hundreds or
thousands of such models [28], the challenge becomes
not only to technically handle the contained
information and make it accessible to users but also to
provide mechanisms for adequately handling
knowledge aspects [14, 21]. In this context, the
concepts and technologies behind blockchains offer an
extension to the traditional handling of enterprise
models. Especially, the core aspect of blockchains to
ensure irrevocable, tamper-resistant storage of
information in a transparent way without trusted third
parties has the potential to fundamentally change the
way how knowledge in the form of enterprise models
is stored and processed in and across organizations.

As shown in Figure 1, Knowledge Blockchains
store information in knowledge blocks that contain
cryptographically-validated information parts. In line
with the mechanisms in typical blockchains today,
these information parts are structured themselves in the
form of binary hash trees that permit to efficiently
ensure the integrity of the knowledge blocks. If
changes to the information shall be made, transactions
are sent to the blockchain and processed by miners in
the mining process. Thereby, it is checked whether all
rules defined for the changes to be conducted are met.

In the following we will describe the required
extensions for enterprise modeling languages in order
to use them in Knowledge Blockchains. This will be
followed by the presentation of the structures of blocks
and the mechanisms for permission management and
delegation. For processing blocks, a specific mining
procedure will be added that ensures the integrity of
the Knowledge Blockchain and permits the application
of so-called knowledge proofs. These will stand for the
concrete application of the Knowledge Blockchain to
tasks in knowledge management.

3.1. Required Extensions of Modeling
Languages

When realizing a modeling language in a modeling
tool, it typically depends on the underlying tool-
platform how the language is to be implemented [20].
The extensions of such modeling languages/knowledge
representations as required for Knowledge Blockchains
abstract from the technical implementation and define
generic attributes that need to be available. With the
description of a concrete implementation in Section 4
we will show how these attributes can be translated to
a technical platform.

Exlended Modelng Lanquage Consirucls

Mo Ty
ULD - UUD
Hame - Sirirg
Altnbate-Hash | Strng
ULID Hash - Stnng

Cipeci-Hash _ Bing

I1.n [1 n

i.n l4.m

Clirs Relatioiv:lass
ULID - UUID fam [o - v
Hame = Stneg - Hams © Strag
eontamadinkindesl © LILID froen - LRJID
Clas=-Relationclass Tyoae ba . ULED
Slring ta comainednMads | ULD
Attnbute-Hash ; Stng Clase-Ra'ationcass Type
: -4 String

Allitele-Hash - String

i I_.-'-.‘l

BPMN Task b BPMN Sequence
Task type = Marua o | Transition cordiion
Bt BT | Fapiacsinn

automatc) from |

-

Sample Elements of a BEMN Mode! Type

Figure 2: Extensions of modeling language
constructs for enabling Knowledge Blockchains and
two sample entities of the BPMN modeling
language

Mo del-Merkle-lact

[+ i T —

< s Pemssn
£ B —a.
! ¢ % ¢ B & »

2| vuo E“E':‘;;“ LD ||"'“E’§l';*“ | yup | [Atcbutal
o S -

{H Hash Function eppiicd to Child Modofs)

Figure 3: Model Merkle tree

A fundamental requirement for Knowledge
Blockchains is the ability to uniquely identify any
element in a conceptual model. Therefore, we revert to
UUID (universally-unique-identifiers) attributes for
model types, classes and relationclasses in the
modeling language — see Figure 2. Any instance of
these entities then needs to contain a correct UUID
value to distinguish it from any other element. This
also applies to the description of relations via from and
to attributes and the containedlnModel attribute to
identify the assignment to a concrete model.
Furthermore, attributes for containing hash values of
attribute names and values (Attribute-Hash) and for all
objects contained in a model (Object-Hash) are added.
In the process of mining, these hash values will be
calculated in the form of a Merkle tree as shown in
Figure 3.

3.2. Representation of Blocks

For any blockchain-based application it needs to be
decided how information is represented and stored on
the chain. The structure derived for blocks in
Knowledge Blockchains is shown in Figure 4. At the
bottom two Merkle trees are contained in each block:
one for representing the hashes of the content of
enterprise models and the other one for storing the
hashes about permissions. The latter aspect will be
discussed in the following Section 3.3. For both trees,
also the Merkle root hash is available which becomes
part of the Block-Header. In the Block-Header, the
hash of the Previous Block, a Timestamp, and the full
content of the models and permissions in XML format
is further added. For operating in distributed
environments under the paradigm of permission-less
ledgers, a Nonce (number used only once) is optionally
available. This is used to solve cryptographic puzzles
for deciding on the next miner to add a block to the
chain — for details see [24]. All data in the Block-
Header except the Nonce and the Timestamp is signed
with the private key of the party submitting a
transaction to produce a digital signature. The resulting
hash value is stored in the Header-Signature. In this
way, the identity of the submitting party is tied to a
block. When a miner has solved the cryptographic

puzzle and successfully checked the information
contained in the block, it adds the Nonce and the
Timestamp values, computes a hash value of the whole
block and signs this hash value with its private key.
These values are then contained in Block-Hash and
Block-Signature.

Elock

| Rlork-Signatur= |

| Black-Hazh |

Elock-Header

Mravinus Block--Haszh |

|
| MNonce |
| |
|

Famb: o

Fababn -4 b

Header-Sigralure]
|

| Timzstamp
kieddrl- Srrmissinr-
Merkla-cat Marhle-Raot
kodal- Farmnission-
werkk:-Trae Werkle-Tresa

Figure 4: Structure of final knowledge blocks

3.3. Permission Management and Delegation

An essential feature of Knowledge Blockchains is
to specify in a very detailed way who is allowed to
conduct which changes on the blockchain. These rights
are described in permission models which are an

Craats Parmissinn

Scope - [Moded typasModet

elemenis| |dj!l‘|l|l!!||

Attributs Mame © Sting = Pukblic Kay

containedinfModel - UUID

ULHD - LAUiD

Artibute-Hazn © Stnng 1.1
Delete Permission i.n

Scope - (Model typas/Model

alemaris]

Artibute Name - Somng =y Permission

containedinfodel - ULUID
ULID - LJID
Artribute-Hasn : Stmng

Ti jﬂl'l"!flﬁ'l F‘"ﬂ Timiasihon

Refergnced Permission
Penmission

dentity - Public Key -
Delegate | Boalean
LLHD: - MR
Attibute- lasa !'}'.r-ng

Figure 5: Structure of permission models

inherent part of every block. As shown in Figure 5,
three types of permissions are currently available:
Create and Delete Permissions that assign an identity
to create or delete models, objects, relations, and
attribute values and Transfer Permissions that allow an
identity to transfer some or all of its permissions to
another identity.

Identities in the permission model are represented
by their Public Keys. In the genesis (initial) block of
Knowledge Blockchains all permissions for all entities
are assigned to the creator of the blockchain. He or she
can then decide through subsequent transactions if and
how these rights are to be delegated to other identities.

3.4. Mining Rules

When new transactions are sent to the blockchain
they are checked for their conformance to the rules set
by the permission model in the previous block. The
mining may either be conducted by authenticated
miners in the case of a permissioned Knowledge
Blockchain or by randomly selected miners in case of
permission-less Knowledge Blockchains.

For conducting the checks during the mining as
shown in Figure 6, it is assumed that for each model
submitted in the transaction, hash values have been
computed a. for the attributes of objects and relations,
for all objects and relations in a model, and for all
combinations of objects, relations, or models and their
corresponding UUIDs, and b. for all combinations of
these hash values, thereby forming a Merkle tree up to
the Merkle root hash. The same is assumed for the
submitted permission models, again up to the Merkle
root hash.

The outcome of the mining process is that either the
requested changes are conducted and a new block is
added to the Knowledge Blockchain. Or, that
permissions have been found to be invalid and the
transaction is declined.

3.5. Knowledge Proofs

By building upon the description of the properties
of Knowledge Blockchains we can now advance to the
discussion of their application in knowledge
management based on the aforementioned knowledge
products [21]. The first application domain is the
transparent monitoring of knowledge evolution,
respectively the dimensions of know-what and know-
when. For tracking the evolution of knowledge as
represented in the form of enterprise models,
Knowledge Blockchains permit to retrieve in detail
how knowledge has evolved over time. This is possible
through investigating the blocks containing all changes

in models and conducting proof procedures for
checking the integrity of all model contents.

Lierk
I eadur
siaraliie

|

o

e L
& aarmisios medd ol et
i By Trarsation
T -

-

o

Con pare
mecd
1 eikle iy

I

Coim
TET TSSO
rarkle raes

T vis| cFeck create -""a_‘h“_‘“w-
¥ | parTismica for e "'"":":“__‘”r
- iz Lty vaid

L crats
/\;:[f’ L
- - r
T ;| redodelee e i - R

< Bty da et] parrissio lor ORI N

™ -~ Ird=ertity el d? T delste
I i
- H"":-ﬁ.-l'- k- E .-"'"a_""‘"'n. RS
o e o o for [Penmisson T Conduet
__ﬂin". ==|'":f__d- i H:.‘;ii‘.-{__. Trashar
- i] Mrs
1{"‘”—- |
- '\-\.,_Hf
T Changrs -H"""'\-:m Zrcline
. Eanducted? - Transactior
x__l__,_-f
Senerale
Tirmes terp
[\Zakou ste
Hoes]
Gerigrale
Elck-Hach
Lign Bleck
anr
Clistn ke

Figure 6: Verification of mining rules in Knowledge
Blockchains

This directly leads to the second application
domain for tracking the provenance, ownership, and
relationships of knowledge in an organization. Not
only can the structure of knowledge in the form of
enterprise models be analyzed in a reliable manner.
Through the availability of digital signatures for the
blocks in the Knowledge Blockchain it can also be
verified who has conducted which change and who has
empowered that person to do so (delegation schemes).
This aspect covers the know-who and know-why.

Finally, proofs can be conducted to ensure that
certain patterns are contained in existing enterprise
models. By computing the hash values for a given

model pattern and applying corresponding Merkle
proofs, it can be verified whether a model pattern is
contained in a model on the Knowledge Blockchain. In
this way, it can be proven — e.g. to external authorities
— that certain knowledge is present in an organization
and that it is used in a specific way, e.g. as part of the
compliance checking of business processes through
auditors (know-what, know-who, know-when). Such a
proof covers the existence of individual model
elements only, to support part of a potentially more
complex compliance check. In reference to zero-
knowledge proofs, the existence of knowledge as part
of a model may be proven without revealing the
contents of the model. In order to prove the existence
of a model element, its attribute data is specified and a
hash function is applied to it, possibly by auditors.

To conduct the proof as described in Section 2,
knowledge of the Merkle tree which stores the model is
sufficient (Figure 3). Thus, attribute data may be
removed before the audit. As of now, pattern matching
uses an exact match approach.

4. Prototypical Implementation

To demonstrate the applicability of a Knowledge
Blockchain and to show that such a system can be
implemented in practice, we created a prototypical
implementation. The prototype does not cover all
mentioned functionalities and primarily serves as a
testbed and simulation environment for experimenting
with the concept of Knowledge Blockchains. We
discuss the components of the implementation, its
capabilities and limitations as well as further
development.

As a basis for the implementation we chose the
ADOxx meta modeling platform [12]. This choice was
due to the prior successful application in many industry
and research projects. The core component is an
ADOxx library consisting of three model-types to
specify blockchains, business process models in
BPMN, and permission models. For illustrative
purposes, all model types have been assigned a
graphical notation. The library has been extended with
algorithms for a. sending block proposals in the form
of transactions, b. mining new blocks, and c. verifying
existing blocks. A custom-developed dynamic link
library (DLL) is used to generate UUIDs, calculate
SHA-256 hash values® and as an interface to the
OpenSSL library for elliptic curve cryptography (ECC)
for public key cryptosystems [18].

LNIST: Secure hash standard (shs). Retrieved 31-05-2017.
http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

b i Yoo Pusmisey pociogioises ey Lu gode jag
U A G el R TR ALY TEN TR A

Knowledge Blocks

wie g derrams

Mo e

Wk Copate BPUR 18 Eraphoase &

o bmgte? W | et g g b 1

Sarn ruannnare

| il pnd IO 2l

[T copy deta

]—I-' Apr cumiomer Br i | —

T 2 pscironic Cotn poowined
o

"I_._T

Srestrares |
| cumicmar proien | — jo—F
SATE SR BHET

BPMN Mnodeal

(PR

e e persans
i marerieation T

Parmession Madel

Eomabety B b By BT

Figure 7: Screenshot of the prototype in ADOxx showing instances of a blockchain model type (upper left), a
permission model type (far right), and a sample business process as a BPMN model (lower left)

By using the ADOxx library, a new Knowledge
Blockchain can be created by specifying a blockchain
owner with a public-private-key-pair. Basic business
process models can currently be constructed using
BPMN Task and Gateway elements, connected by
sequence flows. Permissions are specified and assigned
to identities, for which public- and private-keys are
created. When sending a block proposal, business
processes and a permission model are specified, stored
in Merkle trees and signed. Mining is initiated by a
designated miner; in this process, the platform enforces
permissions concerning the creation of process
elements and permission delegation. Further
permissions will be added in the future. As a
conceptual demonstration, we implemented a
permissioned blockchain in a local environment. For
the future, it is planned to evaluate also a distributed
version in a permission-less fashion.

5. Description of a Fictitious Use Case and
Discussion

For illustrating the application of the concept of
Knowledge Blockchains we will revert in the following
to a fictitious use case.

It builds upon a scenario in the domain of banks
that has been used for scientific research before [11].
In this scenario, the steps and decisions for opening an
account at a bank are described. This information
represents the knowledge about this process that can be
made explicit and that shall be documented in the form
of conceptual enterprise models.

In the context of Knowledge Blockchains, the first
step is to initiate the blockchain and decide which
modeling language to use. In our case this is
accomplished by the CEO of the respective bank who
acts as the blockchain owner and who decides to
collect knowledge about the business processes in her
company using the BPMN modeling language. For the
purpose of simplicity, she chooses to use a
permissioned blockchain that is only available within
the company and managed by one central miner. Upon
creation of the blockchain, the CEO with her identity
in the form of her public key is assigned all create,
delete, and transfer rights in a permission model - see
Figure 8. This information is stored in the genesis
block upon calculating the permission model Merkle
tree. The genesis block is thereby created and signed
by the miner. Subsequently, the CEO decides to
delegate the right to create BPMN models to an
employee.

Inifal Permassions for ©-Level Execufive

| Gl Al
i Parmasatn ype. Créabe Pesimstian

Exipculivn-&

Defele &1
Paffirsi ype: Delete Paimiksinn

Blarage &
Farmissicn ype; Transkr Pamessacn

| Transfer Creale IPMN. 1o Employesf,
Prmizscn type: Transter Permsscn

Delegated Permission for Employes
Crnate BPAWN Modal Elrments

Migmmiasicn hyge Creale Mersiaaisn

Cmployes-A,

Figure 8: Sample instance of a permission model
type

The identity of this Employee A in the form of the
corresponding public key together with a Create-
Permission is thus added to a copy of the permission
model, which is obtained from the previous block. This
is shown in the lower part of Figure 8. The updated
permission model is then submitted to the miner as a
new transaction. For this purpose, the CEO has to sign
the proposed block with the private key of her digital
signature. The miner checks the signature and whether
this identity is allowed to conduct the changes based on
the last permission model. As this is the case for the
CEO identity, the block proposal is accepted and the
new permission model becomes part of the blockchain.
Equipped with the new rights, Employee A can now
create BPMN model elements and submit them to the
blockchain. Upon the receipt of the block proposal, the
miner verifies the identity and the permissions and
adds the information to the Knowledge Blockchain.
This results in further blocks in the Knowledge
Blockchain that represent the content of the business
process model as shown in Figure 9.

The following tasks can now be accomplished
based on the information stored in the blockchain.
First, it can be transparently monitored by all parties
with access to the Knowledge Blockchain, how the
represented knowledge evolves, how new entities are
added, and who is responsible for adding them.
Besides this identification of the provenance of
knowledge, also the delegation scheme behind the
Knowledge Blockchain becomes visible. It can exactly
be tracked, when the CEO delegated the mentioned
Create-Permission and to whom. If necessary, process
model patterns can be specified and tested for their

containment in the Knowledge Blockchain without
revealing the content of the BPMN model (zero-
knowledge proof). By reverting to the example of the
account opening process this could be the task ”Ask
customer for ID”, which is complimentary for any
bank to check the identity of a future customer. In the
current version of the Knowledge Blockchain,
according attribute hash values could be calculated for
this pattern and compared with the Merkle tree stored
in the most recent block to proof its existence.

6. Related Work

Concerning existing approaches which make
similar propositions with regard to the organization and
evolution of knowledge as discussed for Knowledge
Blockchains, we identified the following areas:
approaches that allow to track changes in enterprise
models with their provenances and allow to restrict and
delegate access to models and collaborative modeling
approaches and mechanisms in modeling tools for
multi-user features.

Document management and versioning control
systems (VCS) allow storing any number of electronic
documents, like source code files or models, in a well-
defined state as a version together with their author.
Well-known VCS include systems using a centralized
repository, such as CVS [7] and SVN [8]. Distributed
Version Control Systems (DVCS) such as Git
additionally permit users to create and synchronize
distributed repositories and have grown in popularity
[9]. While VCS offer version control at the level of
individual files, they can also be wused to
collaboratively access models. Altmanninger et al. [2]
evaluate various VCS for this purpose. They show that
such systems usually allow comparisons of models and
the detection of syntactic conflicts. For the purposes of
knowledge evolution, such systems can be leveraged to
track model changes together with their respective
authors. The comparison can take model elements into
account, while a commit or fetch of an artifact is
conducted on a per-model-basis. Access to a repository
can be restricted, however, it is not possible to restrict
the modeling of individual models, model elements or
to delegate such permissions.

Collaborative modeling approaches such as COMA
[27], DREAM [4], and CoMoMod by Dollmann et al.
[10] are concerned with the collaboration during the
creation of models to build models with multiple
participants. Such approaches provide means to
contribute to a model. However, knowledge evolution
in the form of tracking model changes and access
restrictions are not covered by these approaches.

dentity of
Blockchain Owner

T

HEC-Chwarir
Bluck Bluk Bk
Bighaiure WISUCIDNY U Deligwea 1CHIG0Y Sgnalure MEGDHTAZAISFR AR FRicha TPgD, Exgrinfure

Mmncd by HOC-Owrar Mned By

Rtesch-Hagh: 3Ealea D096 001 d3ToRHESE

KIG-Crwmar

Bace-Hamb: 3162518603 bd Ta 226664 160ad...

Mined =y

B - Hams b

Biock-Hescler Block-Header

Fresr, Sinck-Hasho
eedar-Sinehne: ME LS OM R ERRIeE
Timesiamp

8. KT 12403 Timgst2mp

Ml odet-baride-Fooot Weficefiemi- M esriche= R oot

Pannizsir -Meikie-Ruol
CERlZecs] eacail ToolG P TErIbdE.

Prew. Block-Hash 1a81b0721 Midean
Header-Signatere MEVCIIDyTg+anTiga
2,05 21 T 1At eE

Pemissin-fdere-Rool
SCelabtlnHIZ e BEUIDM D anifties ol

Block-Header
Frev. Brci-Hash

Header-Sgnahng MEYD Do+ itz Frdicg
Timastamp;

Mok Merkle- Roat:

UL RIS T I e B Bl 2.

Permizs jon-feikke-fool
sCelabtUCHT b b Tant X iies fall

Cengsls Block Minad Block

Trangaction wih a Block Proposal

Figure 9: Detailed view of the sample instance of the Knowledge Blockchain model type in ADOXx

On a tool level, professional modeling tools such as
ADOxx [12] or MetaEdit+ [19] provide multi-user
features. Models can be organized in repositories and
versioned. Much like in VCS, versions and authors of
individual model versions may be tracked, however,
there is no enforcement of individual access
restrictions at the platform level. This means that there
is no system-enforced process by which new models or
model elements are proposed, checked against
permissions and possibly added to a repository.

With regard to existing approaches, version control
systems are typically used to provide knowledge
evolution features through extensions and
implementations in modeling tools. The model creation
process is covered by collaborative modeling
approaches that focus on the creation process. A
blockchain-based method facilitates collaborative
aspects by allowing identities to make signed changes
to models, which are incorporated only if platform-
enforced access rules allow it. Through the generation
of irrevocable blocks with the changed models,
versioning is implicit. In contrast to existing
approaches, cryptography enforces access control and
allows changes on a per model- and model-element-
basis that can be traced back to their provenance.

7. Conclusion and Outlook

In this paper, we have presented the concept of
Knowledge Blockchains for storing the knowledge
expressed in enterprise models in an immutable and
tamper-resistant way. It has been illustrated which
benefits can be gained from such an approach in the
context of knowledge management. The approach in its
current stage contains several limitations that are to be

tackled in future versions. For example, it is currently
not foreseen to uniquely identify also the elements of
the modeling language using UUIDs and to ensure the
correct instantiation of models based on the modeling
language. This is currently assumed to be implicitly
handled by the used modeling platform. In addition,
also the current implementation on the ADOXxx
platform has several shortcomings. First and foremost,
the implementation so far only contains a subset of the
required rules for checking the conformance of blocks
during mining.

Regarding future work, extensions of the UUID
scheme using URI will be evaluated. In addition, the
approach will be described in a more formal way, e.g.
using a formalism such as FDMM [13], to ensure a
common understanding of all technical details.

